PHYSICAL REVIEW E 75, 011927 (2007)
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Cardiac myocytes are excitable cells in which an external current stimulus depolarizes the membrane
potential to elicit an action potential. This action potential then triggers calcium release from intracellular
stores, which mediates contraction. Conversely, intracellular calcium also modulates membrane currents, af-
fecting action potential morphology and action potential duration (APD). The interactions between action
potential and calcium, termed excitation-contraction coupling, give rise to a rich spectrum of nonlinear dy-
namics, especially at rapid heart rates, which are important for cardiac contraction and the development of
lethal arrhythmias. In this study, we developed a nonlinear iterated map model to investigate the dynamics of
cardiac excitation-contraction coupling in a periodically stimulated cell. We first studied the nonlinear dynam-
ics due to APD restitution, a functional relation between APD and its preceding diastolic interval. We then
studied the nonlinear dynamics due to intracellular calcium cycling when total cell calcium is constant or varies
at a beat-to-beat basis. Finally, we studied the nonlinear dynamics due to the bidirectional coupling of the two
dynamical systems. Saddle-node bifurcations leading to bistability, period-doubling bifurcations leading to
alternans, and period-doubling routes to chaos can independently occur in both action potential or intracellular
calcium cycling subsystems as heart rate increases. A Hopf bifurcation leading to quasiperiodicity occurs when
the two dynamical systems are coupled. Although these dynamics are predicted from low-dimensional iterated
maps, the approach here provides valuable information which can be used as a basis to explore dynamical
features of physiologically detailed ionic models, to illuminate experimental findings, and to design experi-

mentally testable predictions for new biological experiments.

DOI: 10.1103/PhysRevE.75.011927

I. INTRODUCTION

In the normal heart, the cardiac action potential originates
in the sinus node and propagates as an electrical wave
through the atria, atrioventricular conduction system and the
ventricles. In the setting of heart disease, however, heteroge-
neous electrophysiological properties in different regions of
the heart can become large enough to cause wavebreaks in-
ducing reentrant arrhythmias, which may be life threatening
due to their rapid rate. Recent evidence indicates that dy-
namic properties of cardiac excitation-contraction (EC) cou-
pling contribute importantly to functional magnification of
tissue heterogeneities promoting arrhythmogenesis [1,2]. At
the cellular level, the causes for these dynamics are mainly
related to action potential properties, including action poten-
tial duration (APD) restitution [3—12], intracellular calcium
(Ca) cycling dynamics [13-17], and wave conduction prop-
erties such as conduction velocity restitution [11,12,18-20].

The major interactions between the action potential and
Ca cycling in cardiac myocytes are illustrated in Fig. 1(A)
[21,22]. There are many ion channels in the cell membrane,
including sodium (Na), potassium (K), and Ca channels. Na
and Ca currents pass inward current while K currents are
outward, in accordance with their respective electrochemical
driving forces. The action potential is a transient response of
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the membrane to an external current stimulus, reflecting the
competition between fast inward currents and slow outward
currents. At rest, the membrane potential of a cardiac myo-
cyte is around =80 mV [see Fig. 1(B)]. External current from
the stimulus brings the voltage to a threshold voltage
(~=60 mV) at which the Na channels open. The Na current
is an inward current which further depolarizes the membrane
potential to above zero. The Na channel inactivates quickly,
resulting in a sharp pulselike current. The L-type Ca current
is another inward current which is activated above —40 mV
and inactivates much slower than the Na current, and thus
maintains the depolarization phase of the action potential for
a longer time. As this current inactivates, the outward K cur-
rents increase and eventually exceed the inward currents, re-
polarizing the membrane back to the resting potential of
—80 mV. The Na is pumped out of the cell and the K is
pumped back into the cell by the Na-K pump to maintain the
resting membrane potential and Na and K homeostasis. Ca
homeostasis of the cell is maintained principally by influx
through L-type Ca channels and extrusion through electro-
genic Na-Ca exchange. Ca is also compartmentalized inside
the cell, stored in intracellular organelles known as the sar-
coplasmic reticulum (SR). Ca entry through the L-type Ca
channel triggers release of Ca from the SR into the cyto-
plasm by activating SR Ca release (RyR) channels, through a
process called Ca induced Ca release. After Ca is released
into the cytoplasm, it is pumped back into the SR by the
sarcoplasmic-endoplasmic reticulum Ca ATPase (SERCA)
pump, with a small amount of leak from the SR back into the
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FIG. 1. (A) Schematic illustration of cardiac EC coupling. LCC represents L-type Ca current; NCX represents Na-Ca exchange; SR
represents sarcoplasmic reticulum; RyR represents ryanodine receptors (SR Ca release channels); SERCA represents sarcoplasmic-
endoplasmic reticulum Ca ATPase (SR Ca uptake pump). See text for details. (B) Graphical definitions of APD, DI, and stimulation period
T (upper trace); diastolic Ca (c) at the end of each beat, peak cytoplasmic Ca (c?), and Ca released (r) from the SR (middle trace); and SR
Ca load (/) at the end of each beat (bottom trace), illustrated for the nth and (n+1)th beat.

myoplasm. Overall Ca cycling is dominated by the move-
ment between the intracellular compartments, with 70%-—
90% of the total Ca flux occurring between the SR and cy-
toplasm, and only 10%-30% across the sarcolemma. Ca
cycling is strongly coupled to membrane voltage via Ca sen-
sitive ion channels and transporters. A large Ca release inac-
tivates the L-type Ca current more rapidly, tending to shorten
the APD. On the other hand, a large Ca release also promotes
Ca efflux via the electrogenic Na-Ca exchange, which gen-
erates an inward current which tends to prolong the APD.
Depending on which effect dominates, a large Ca release can
either shorten or prolong APD. Following previous studies
[15,16], we will refer the former effect as negative Ca-to-
APD coupling, and the latter as positive Ca-to-APD cou-
pling. Conversely, a long APD can enhance or diminish Ca
release in the subsequent beat, which we refer to as positive
or negative APD-to-Ca coupling, respectively.

Due to the complex nonlinear interactions between mem-
brane potential, ionic currents, and intracellular ion fluxes, a
rich spectrum of nonlinear dynamics has been reported at
multiple spatial scales, ranging from subcellular to whole
cell to multicellular tissue to intact heart [3,18,23-36]. A
valuable tool for understanding the mechanisms underlying
these dynamics has been low-dimensional iterated maps
[3,15,16,24]. Previous studies [15,16] have investigated dy-
namical instabilities due to EC coupling of isolated cardiac
myocytes under periodic stimulations using this approach but
have been restricted to general analysis and linear maps. In
this study, we have generalized these studies to first develop
an EC coupling iterated map model to include most of the
up-to-date experimentally observed features with nonlinear
maps, which enable more physiologically realistic relation-
ships to be incorporated into the analysis. We then analyze
the dynamics of iterated maps for APD and Ca dynamics
separately, followed by a detailed analysis of the coupled
system.

II. MODEL DEVELOPMENT

In previous studies [3,37], APD has been assumed to be a
function of the preceding diastolic interval (DI), which is

mainly determined by the kinetics of recovery from inactiva-
tion and deactivation of various ion channels. However, as
illustrated in Fig. 1(A), since APD is also affected by the Ca
transient, here we assume that APD is a function of both the
previous DI and the peak cytoplasmic Ca of the present beat,
ie.,

an+1:f(dn’dn’+l)’ (1)

where a,,, is the APD of the (n+1)th beat, ¢?,, is the peak
cytoplasmic Ca of the (n+ 1)th beat, and d,, is the DI of the
nth beat, defined as

d,=T-a,, ()
where T is the period of stimulation. Figure 1(B) shows
graphical illustration of the key variables used in this study.
The relation between APD and its previous DI, the so-called
APD restitution, has been measured in many experimental
studies [38—41]. However, the dependence of APD on Ca is
variable, such that increased Ca can either shorten or prolong
APD depending on experimental conditions [15,16]. For
simplicity, we set the function in Eq. (1) into separate
voltage-dependent (mainly due to ion channel recovery) and
Ca-dependent (mainly due to Ca-dependent ion currents)
components as follows:

Apy =f(dn) +P(C£+1)an+1 . (3)

Since there is no experimental data to show how Ca affects
APD, we assume that the magnitude of its effect is propor-
tional to APD of the same [(n+ 1)th] beat, and we simply set
p(ch, ) proportional to the peak cytoplasmic Ca, i.e.,

p(C +1) ')’Cﬁﬂ s (4)

where 7y is the parameter describing the coupling strength.
v>0 corresponds to positive Ca-to-APD coupling, while y
<0 to negative Ca-to-APD coupling. c”,, is determined by
the following equation [see illustration in Fig. 1(B)]:
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FIG. 2. Dynamics due to monotonic APD restitution curves. (A) Steep and shallow APD restitution curves from Eq. (5) with A,
=220 ms, A;=0, dy=40 ms, 75=30 ms (solid line), and 77,=60 ms (dashed line). The open and filled circles are the steady state solutions for
the two APD restitution curves at pacing period 7. (B) APD restitution slope for the two APD restitution curves shown in (A). (C)
Bifurcation diagram showing APD versus pacing period T for the steeper APD restitution curve in (A), by iterating Eq. (18). The bifurcation
sequence is 1:1—2:2—2:1—4:2—ID—4:1—1ID, where “n:m” indicates that n stimulations cause m different action potentials, which
repeat periodically (e.g., “2:2” means that two successive stimuli result in two different APDs, i.e., APD alternans). ID stands for irregular
dynamics or dynamic chaos. For each T, we discarded the first 150 APDs and plotted the next 100 APDs. In the alternans (2:2) regime, there
are only two APD values although 100 APDs were plotted; however, in the chaotic regime, the values of the 100 APDs are different,
resulting in scattered plots. (D) Bifurcation diagram showing APD versus pacing period T for the shallower APD restitution curve in (A),
obtained by iterating Eq. (18). (E) a,,, versus a,, in the chaotic regime in C for 7=70 ms, showing a discontinuous map similar to the classic

shift map.

(5)

i.e., the peak cytoplasmic Ca is a sum of diastolic cytoplas-
mic Ca (c,) and the total Ca released (r,,;) from the SR
during the (n+1)th beat. ¢, is defined as the diastolic Ca in
the cytoplasm at the end of the nth beat. The total Ca b, in
the cell at the end of the nth beat is the sum of the diastolic
Ca c,, in the cytoplasm and the Ca load [, in the SR of the nth
beat, from which ¢, is determined as

Y
Cn+l_cn+rn+1’

(6)

The equations for b,, I,,, and r,,; will be shown later. f(d,,) is
the APD restitution function, for which we use the following
function:

Cn=bn - ln'

F(d) =Ag[1=1/(1 + PO/ )] 4 A== DV (7)

where A, Dy, 7y, A;, Dy, and 7; are parameters that control
the shape of the APD restitution curve. The rationale for
choosing Eq. (7) is as follows. When A, =0, Eq. (7) is always
a monotonically increasing function and saturates at long DIs
[see Fig. 2(A) below], similar to most of the experimentally
observed APD restitution curves [40,41]. When A, #0, Eq.
(7) can be nonmonotonic or biphasic [see Fig. 3(A) below],

which has also been observed in human and animal experi-
ments [39,42].

The total SR Ca load of the present beat ([, ) is equal to
that of the previous beat (/,,) less the Ca released from the SR
(ru4+1), the Ca leak from the SR (z,,;), and plus the Ca re-
uptake by the SR (u,,,) of the present beat, i.e.,

(8)

ln+1 = ln Tl T Tl T Uy

It has been shown experimentally [43,44] that Ca released
from the SR depends on SR Ca load. In addition, the Ca
released from the SR is dependent on the magnitude of the
L-type Ca current, which is responsible for triggering Ca
release from the SR [Fig. 1(A)]. Since the magnitude of the
L-type Ca current during an action potential is dependent on
the time of recovery from inactivation, the amount of Ca
released from the SR is also dependent on the previous DI
[45,46]. Furthermore, RyR channels, which open in response
to Ca entry from the L-type Ca channel, are believed to be
inactive in a Ca-sensitive manner. Hence, on the next beat,
the availability of RyR channels to open will be critically
dependent on the recovery time duration, i.e., the previous
DI. To represent these dependencies mathematically, we de-
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FIG. 3. Dynamics due to a nonmontonic APD
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fine the Ca released from the SR as a product of two func- u(l)=(1- pg‘T/"u), (14)

tions,

rue1 = 4(d,)g(1,) )

in which ¢(d,) describes the restitution properties of SR Ca
release, due either to refractoriness of RyR channels or to
graded SR Ca release proportional to recovery of the L-type
Ca current. Based on the experimental data [45,46], we
choose the following restitution function for ¢(d,,):

q(d,) = (1 - ge™¥'™). (10)

The release function g(/,) in Eq. (9) represents the depen-
dence of SR Ca release on the load state of the SR. This
functional dependence has been measured, and can be de-
scribed by a function of the form

g(L)=1,[1=(1—a)/(1 + e A)] (11)

which can be fitted directly to experimental data, as will be
shown later. «, B, and /. are parameters that can be deter-
mined from fitting the experimental data.

Ca leak from the SR is also a function of SR Ca load [47],
ie.,

Zurr = w(ly), (12)

where z,,,; denotes the amount of Ca leaked from the SR on
the (n+ 1)th beat. Since SR Ca leak is solely a function of SR
Ca load, similar to the release function g(l,), we have not
explicitly included it in this study, i.e., the function g(I,) is
taken to represent implicitly the summed effect of SR Ca
release and SR Ca leak.

Ca is pumped back into the SR via SERCA pumps, for
which we choose the following function:

Upit —“(T)h(cn+1 (13)

where u(T) reflects the fact that the total Ca pumped into the
SR depends on the time duration of pumping [21,48]. This
effect can be modeled using

In Eq. (13), h(c?,,) is the SR Ca uptake function, which,
according to experimental data is also a sigmoidal function
[49,50]. Here we assume the uptake function to be

h(er) = veh [1 = 1/(1 + eanm<09)], (15)

where v, ¢, and @ are parameters.

The total Ca inside the cell during the (n+ 1)th beat is the
total Ca left from the nth beat plus the net Ca influx or efflux
during the (n+1)th beat, for which we used the following
equation:

bn+l = bn - K[Cn - C(T)] + 77(an+1 - an)’ (16)

where 7 and k are constants and c¢(7) is the steady state
cytoplasmic Ca at cycle length 7, accounting for Ca accumu-
lation in the cell. The second term in Eq. (16) tends to equili-
brate the cytoplasmic Ca at ¢(T). Usually, Ca concentration
increases as T decreases [21,41] due to Ca accumulation.
Thus, we define ¢(7) as

c(T) = co(1 +ge77'™), (17)

where 7. and e are constants. Since APD affects the L-type
Ca current and the Na-Ca exchange current, affecting Ca flux
through the cell membrane and thus the total Ca in the cell,
we model this effect by adding the term 7(a,.;—a,) into Eq.
(16). At the equilibrium state, a,,;=a,, the contribution of
this term is zero. But at periodic or chaotic states, a,,; # a,,
then Ca may enter or exit the cell on a beat-to-beat basis.
7> 0 indicates positive APD-to-Ca coupling, while <0 in-
dicates negative APD-to-Ca coupling.

III. DYNAMICAL INSTABILITIES DUE TO APD
RESTITUTION

The effects of the slope of APD restitution on APD dy-
namics during periodic pacing have been widely studied
[3,42,51-53]. Here we outline the dynamics due to APD res-
titution as a prerequisite for studying the new dynamics due
to EC coupling. During periodic pacing with period 7, the
iterated map based on APD restitution is
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At :f(dn)zf(T_an) (18)

The steady state solution of Eq. (18) can be obtained from
the equation a,=f(T—a,) if the function f is known. Alterna-
tively, the solution can be graphically determined by the in-
tersection of a,=T-d, and a,.;=f(d,), as shown in Fig.
2(A). If a small perturbation, &d, or da,, is given to the
steady state at the nth beat, then from Eq. (18), one obtains
the APD change for the (n+ 1)th beat as
daf daf

5an+l = _5dn=_ _561,1.

19
dd, dd, (19)

The steady state becomes unstable when the slope of APD
restitution curve at the steady state is greater than 1 (or less
than —-1), i.e.,

4
dd,

>1

'l = , (20)
since the perturbation grows instead of shrinks. For f'>1, a
period doubling bifurcation leads to APD alternans, as indi-
cated by the perturbation in Eq. (19) growing in an alternat-
ing (positive-negative) pattern until a stationary alternans is
established due to nonlinearity of the APD restitution curve.
For f' <-1, a saddle-node bifurcation occurs: the perturba-
tion grows steadily until the system reaches a new steady
state.

For the steeper monotonic APD restitution curve in Fig.
2(A), f'=1 occurs at d=90 ms [Fig. 2(B)] at which a
=185 ms. APD alternans occurs at 7=90 ms+185 ms
=275 ms [Fig. 2(C)]. As T decreases, 2:1 block occur at T
=226 ms, followed by a more complex response, such as
chaos. The bifurcation sequence shows: 1:1—2:2—2:1
—4:2—1ID—4:1—8:2—1ID. This bifurcation sequence is
very similar to the one observed in an experiment by Chialvo
et al. [26], in which a bifurcation sequence, 1:1—2:2
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served. For the shallower APD restitution curve shown in
Fig. 2(A), as T decreases, neither alternans nor other com-
plex dynamics occur, except for 2:1 and 3:1 block [Fig.
2(D)], etc. In this case, 2:1 block occurs at =110 ms, which
is much shorter than in the steep APD restitution case. The
occurrence of chaos for monotonic APD restitution curves is
a consequence of both steep APD restitution and stimulation
failure, producing a classical shift map mechanism of chaos
as indicated by the return map shown in Fig. 2(E).

For nonmonotonic APD restitution curves [Fig. 3(A)],
both f/>1 and f'<-1 can occur [Fig. 3(B)], leading to
multiple steady state solutions [inset in Fig. 3(A)] as T de-
ceases. In Fig. 3(C), a bistable solution (dashed box) occurs
at around 7=250 ms, followed by a period doubling route to
chaos [Fig. 3(C)]. Unlike the case of monotonic APD resti-
tution curve, chaos can precede 2:1 block. Before 2:1 block,
this mechanism for chaos is the same as for the unimodal
map [Fig. 3(E)], but after 2:1 block, both shift map and uni-
modal map mechanisms may be responsible, as shown by the
return maps in Fig. 3(D).

IV. DYNAMICAL INSTABILITIES DUE TO
INTRACELLULAR CALCIUM CYCLING

In this section, we investigate the nonlinear dynamics of
Ca cycling under two conditions: (1) Total Ca inside the cell
is set to a constant, i.e., Ca influx exactly matches the Ca
efflux at any time and condition. (2) Total Ca in the cell can
vary on a beat-to-beat basis, as occurs physiologically under
voltage or action potential clamp conditions. Although the
first case is not physiologically realistic with current technol-
ogy, it is important for understanding the dynamical effects
due to intracellular Ca cycling alone.

A. Ca cycling dynamics when total Ca is constant

Ca cycling dynamics for constant total Ca has been ana-
lyzed by Shiferaw et al. [14] in general and in a linear map

FIG. 4. (Color online) (A) Phase diagram in
the parameter space of steepness of SR Ca release
and uptake curves. Solid line is (1-A")(1-g’)
—1 and dashed line is (1-A")(1-g’)=1. Based
on available experimental information, only the
positive slopes (shaded area) are realistic param-
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FIG. 5. Dynamics due to nonlinear SR Ca release and uptake when total cell Ca is constant. (A) Ca release (r) versus total Ca (b) for
v=0.25. (B) SR Ca release (r) versus the rate of SR Ca uptake (v) for b=200. (C) Phase diagram in the 1»-b parameter space. “SS” is the
stable steady state region, “ALT” is the alternans region, and “CM” is the complex dynamics region, including higher periodic and chaotic
solutions. (D) Return maps (/,,,; vs /,) for v=0.25 (dashed) and v=0.5 (solid), showing unimodal maps and chaos occurring when the slopes

are steep (dashed). g(1,)=1,[1—(1-0.036)/(1+e"939/5)] and h(ch, ) =uch 1—1/(1+e(cg+1’50)/20)] were used for (A)—(D), representing

n+l1
transitions from region I to region II of Fig. 4(A). (E) A bistable solution when the parameters are set to undergo a transition from region I

to region TI in Fig. 4(A). g(1,)=1,[1-(1-0.036)/(1+e==355)] and h(c”, )=vc?, [1-1/(1+e1754)] were used with v=0.75. Dashed
arrows indicate that for continuously increasing or decreasing b, the system jumps from one steady state to the other at different thresholds.

(F) SR Ca release (r) versus total Ca (b) when the parameters are set to undergo transition from region I to region IV in Fig. 4(A). g(l,)
=0.251, and h(ch, )=wvch [1-1/(1 +en1750/4)] were used with v=0.75.
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by Weiss et al. [15]. Here we extend their analysis to include
both SR Ca release and SR Ca uptake using more realistic
nonlinear functions. When the total Ca inside the cell is con-
stant, i.e., b,=b, only one iterated map [Eq. (8)] is needed to
describe the dynamics, which is

ln+l :ln_g(ln) +h(C‘Z+1)’ (21)
where ¢/, can be obtained from Eqs. (5) and (6) as
c£+l =b- ln + g(ln) . (22)

A small perturbation from the steady state satisfies the fol-
lowing equation:

dc?
S, = 5zn—g'51n+h'd—’l’“azn= (1-hn)(1-g")4dl,

(23)

dh(chy) , dg(l)
@ and g'= i, are the slopes of the SR Ca

release function and SR Ca uptake function at steady state.
Therefore the steady state is stable when

[(1=nr")(1=-g")|>1.

in which i’ =

(24)

Otherwise, the steady state is unstable. In the parameter
space of the two slopes (g’ and 4'), the stable and unstable
regions are separated by hyperbolic lines of (1-A')(1-g")
=-1 and (1-h")(1-g")=1. Available experimental data in-
dicates that under physiological conditions, g’ >0 and A’
>0, so that we only show positive parameter ranges in Fig.
4(A). The experimental data obtained by Bassani et al. [43]
for SR Ca release can be fit by g(7,)=1,[1-(1-0.036)/(1
+en=9355)] [Fig. 4(B), after Shannon er al. [44]], and is
used in the simulations in this paper unless otherwise indi-
cated. For the SR Ca uptake function %(c,,), experimental
data [49,50] suggests a sigmoidal function of Ca, although

A
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no direct data is available. As an approximation, we use
h(ch, )=vch [1 —1/(1+e(0ﬁ+1‘50)/20)] in the simulations, un-
less otherwise indicated.

Combining Eq. (21) with Eq. (22), we obtain an equation

for /,,; as a function of ¢, |, i.e.,

ln+1 =b+h(c£+1)_cg+l' (25)

Equation (22) and Eq. (25) are two nullclines in the space of
SR Ca load (/) and peak cytoplasmic Ca (cP), and their in-
tersections are the steady state solutions. Figure 4(C) shows
three examples in which the parameters were set in regions
II, I or IV of Fig. 4(A), respectively. In region I of Fig.
4(A), the steady state is stable. When the parameters change
from region I to region II, a period-doubling bifurcation
leading to alternans and chaos is observed [Figs. 5(A)-5(C)].
Figure 5(A) illustrates the period-doubling bifurcation for
increasing total Ca b with the SR Ca uptake rate v fixed.
Figure 5(B) shows the bifurcation generated by changing SR
Ca uptake rate v while keeping total Ca b fixed. Figure 5(C)
shows the phase diagram for alternans and complex dynam-
ics in the parameter space of SR Ca uptake rate v versus total
Ca b. The mechanism for chaos is the same as in the logistic
map, i.e., a unimodal map with steep slopes [Fig. 5(D)].
When the parameters change from region I to region III of
Fig. 4(A), a saddle-node bifurcation causes the system to
bifurcate from one stable steady state to three steady state
solutions [Fig. 4(A)], two of which are stable and one un-
stable, leading to bistability as &’ and g’ increase or total Ca
increases [Fig. 5(E)]. When the parameters change from re-
gion I to region IV of Fig. 4(A), a bifurcation to Ca alternans
was observed [Fig. 5(F)]. In this case, alternans can be
caused by steep SR Ca uptake without the need for steep SR
Ca release.

FIG. 6. Ca dynamics during simulated action
potential voltage clamp conditions, from Eq.
(26). (A) SR Ca release r versus pacing cycle
length T for two different values of «. The same
g(l,) and h(cP,,) as in Fig. 5(A) were used with
v=0.4 and c(7)=28(1+2¢773%). (B) SR Ca re-
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lease r versus beat number for 7=275 ms for two
different small values of . (C) SR Ca release r
versus pacing cycle length 7. The same g(/,) and
h(ch,,) as in Fig. 5(B) were used with v=0.4. «
=0.2, and ¢(7)=20(1+2¢"73%) (D) SR Ca re-
lease r versus pacing cycle length 7. The same
¢(l,) and h(cl,,) as in Fig. 5(F) were used with
v=04. k=0.2, and ¢(T)=20(1+2¢"73%) Dashed
arrows in (C) and (D) indicate discontinuous
transitions with continuously increasing or de-

creasing 7.
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Physiologically, the transition from a stable steady state to
alternans due to parameter changes from region I to region II
may correspond to two conditions. The first is the alternans
observed in normal cardiac myocytes or tissue at rapid heart
rates [54]. In this case, as cycle length T deceases, Ca accu-
mulates in the cell and thus the total Ca increases, engaging
the steeply sloped region of SR Ca release versus SR Ca load
relationship. The second is the alternans due to depressed
SERCA pump in acute myocardial ischemia or heart failure
[55,56]. In this case, SR Ca uptake is reduced due to de-
pressed SERCA pump function [57], while steep SR Ca re-
lease may still be preserved at smaller SR Ca loads [58].
Alternans is also promoted by drugs that reduce the SR Ca
pump [59]. The transition to alternans due to parameter
changes from region I to region IV may correspond to the
case in which SR Ca release is depressed pharmacologically
by the drug tetracaine [34]. Further modeling and experimen-
tal studies are needed to validate the conclusions of this it-
erated map analysis.

B. Ca cycling dynamics under action potential voltage clamp

In real cells, Ca enters and exits the cell during each ac-
tion potential through L-type Ca channels, Na-Ca exchange

PHYSICAL REVIEW E 75, 011927 (2007)

and other processes, so that total Ca is not necessarily con-
stant. Here we investigate the case in which total cell Ca is
allowed to vary on a beat-to-beat basis, corresponding, for
example, to pacing with an action potential voltage clamp. In
this setting, the membrane potential of the cell is externally
clamped with the waveform of a normal action potential ap-
plied periodically with period 7.

In the first case, we assume SR Ca release and uptake are
independent of activation rate, so that the mapping equations
are [from Egs. (8) and (16)],

Ly =1, - g(l,) + h(cﬁ+1)7

bn+l = bn - K[cn - C(T)] . (26)

We first carry out a linear stability analysis of the steady state
for Eq. (26). The linearized equations become

(51,,+1>=(<1—h')<1—g'> A’ )(51,1). @
b,y K 1-k/\6b,

The stability of the state is determined by the eigenvalues of
the Jacobian in Eq. (27), which are

)\1,2=

(1-r)1-g)+1-kx\[(1-h)(1-g)—(1-K)P+4xh’ Ao+ 1=kx V(o= 1+K)>+4xh’

2

in which A\y=(1-h")(1-g") is the eigenvalue when total cell
Ca is constant. For \y<<1, and k<1, Eq. (28) can be ap-
proximated by

A]Z)\O—Khl, )\221—K+K1’l,. (29)

Therefore, for small «, \; in Eq. (29) is mainly deter-
mined by SR Ca cycling dynamics, whereas N, is mainly
determined by the membrane Ca flux. When i’ <1, A, <1
always holds, whereas A may become smaller than —1 if A
is close to —1. In other words, Ca flux through the membrane
can promote Ca alternans. When i’ >1, N\, becomes greater
than one, leading to new instabilities. It should be noted that
when « is small, N\, is close to one, which indicates that
following a perturbation, a long time is required for the sys-
tem to return to its stationary state. In other words, « is the
parameter determining the memory for Ca dynamics. Short-
term memory has shown to be an important feature in car-
diac systems [60-62]: the small beat-to-beat Ca extrusion or
accumulation may contribute importantly for cardiac
memory [41].

We numerically simulated Eq. (26) to verify the theoreti-
cal analysis. Figure 6(A) shows bifurcation diagrams for «
=0.2 and k=0.5 with the parameters chosen for the transition
from region I to region II of Fig. 4(A), at which A’ <1. Ca
alternans occurs at a longer cycle length 7 as k becomes
larger. Figure 6(B) compares the times for the system to

5 (28)

evolve to a steady state from initial conditions far away from
the steady state, for two different «. It takes more time for
the system to evolve to its steady state for smaller «, illus-
trating how « regulates the time constant of memory of the
system. If we set the parameters for Ca cycling undergoing a
transition from region I to region III of Fig. 4(A) at which
h'>1 and g’ is also large, the bifurcation pattern is very
different from when the total cell Ca is constant [Fig. 6(C)].
In this case, at long 7, a single stable steady state with very
small SR Ca release exists, whereas at short 7, alternans
occurs. In the intermediate 7 range, alternans and the low SR
Ca release steady state coexist, creating a form of bistability.
When we set the parameters for Ca cycling undergoing a
transition from region I to region IV of Fig. 4(A), at which
h' >1, the bifurcation to alternans in the constant total Ca
case is converted into a saddle-node bifurcation leading to
bistability [Fig. 6(D)]. Thus, the numerical results in Fig. 6
agree with the eigenvalue analysis above.

In the second case, we allow SR Ca release and uptake to
be rate dependent. The map equations then become

L1 =1,—q(d,)g(l,) + M(T)h(cﬁ.ﬂ)’

bn+l = hn - K[Cn - C(T)] . (30)

We first study how restitution properties of SR Ca release
affect the dynamics. Figure 7(A) shows bifurcation diagrams

011927-8
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FIG. 7. Effects of rate-dependent SR Ca re-
lease and uptake on Ca dynamics during simu-

lated action potential voltage clamp conditions,
from Eq. (30). ¢(T)=28(1+2¢773%) and g(I,)
and h(ch,,) are the same as in Fig. 5(A). Left-
hand panels: SR Ca release versus pacing cycle
length 7. Right-hand panels: SR Ca load versus
pacing cycle length 7. v=0.4, x=0.2. (A) For
q(d,)=(1-0.5¢"%"%0) w(T)=1 and d,=T-150.
(B) For u(T)=(1-0.5¢"72%) and ¢(d,)=1.
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of SR Ca release and SR Ca load by simulating Eq. (30) with
u(T)=1 and the parameters were set so that a transition oc-
curs from region I to region II of Fig. 4(A). As T decreases,
Ca alternans occurs and then disappears. Although the SR Ca
release function is attenuated as 7 decreases, the actual SR
Ca release in the model does not decrease due to the in-
creased SR Ca load. We also simulated Eq. (30) with ¢(d,,)
=1 to study how rate-dependent SR Ca uptake will affect the
dynamics. Figure 7(B) shows that for this case, Ca alternans
with an attenuated amplitude occurs at shorter T [compare to
Fig. 6(A)], indicating that rate-dependent SR Ca uptake
tends to stabilize the system. This seems to be opposite to the
phase diagram of Fig. 4(A), in which once the parameters are
set to region I with steep SR Ca release, decreasing SR Ca
uptake rate promotes alternans. This is because as T de-
creases, u(T) decreases, but so does the SR Ca load, pushing
the system into the region with less steep SR Ca release
(smaller g'). This latter effect suppresses alternans.

V. DYNAMICS OF EC COUPLING

After analyzing the APD and Ca cycling dynamics sepa-
rately above, here we couple the APD map with the Ca cy-
cling maps to study the combined dynamics of EC coupling.
The main iterated map equations are

Ay =f(dn) + P(Cﬁﬂ)an“,

q(d,)g(l,) + u(T)h(cy, ),

ln+1 = ln -

bn+1 = bn + 77(an+1 - an) - K[Cn - C(T)]’ (31)

as defined in Egs. (1)—=(17) in the model development sec-
tion. For the convenience of analytical treatment of stability,
we first assume that the total Ca in the cell is constant for

each beat, so that we can reduce Eq. (31) into two equations,
ie.,

Ayt =f(d )"‘P(C +1)

api1 = (Cﬁ+1)f(d )

L =1, = q(d,)g(L,) + u(Dh(c),,). (32)

Linearizing Eq. (32) at its steady state, we have
- (1 - 7Cpn+l)f, 5an + 7(_ 1+ qg,)f5ln
(1 - ?’Cgﬂ)z

Oy, = =mda,

+ m125ln,

5ln+1 = gq, 561,1 + (1 - qg/)[l - M(T)h/]aln = m215an + m225ln
(33)

in which ¢'= d(d”) is the slope of the SR Ca release restitu-
tion. All Varlables functions, and derivatives in Eq. (33) are
their values at the steady state. The two eigenvalues of Eq.
(33) are

2
(myy +my,) + \(m” Ma)” + 4m oy,
2 9

Np= (34)

mp =— I—WL is the contribution from the APD restitution,
and my,=(1-qg’)[1-u(T)h'] is the contribution from the Ca
cycling. m;, and m,, are the contributions from the couplings
of APD and Ca.

As shown by Shiferaw er al. [16], depending on coupling
relation vy between APD and Ca in Eq. (4), different dynam-
ics occurs. Ca can influence APD positively when y>0 (i.e.,
a larger Ca transient causes APD to shorten, termed positive
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FIG. 8. Stability boundaries for positive Ca-to-APD coupling
(y=0.001), uncoupled (y=0), negative Ca-to-APD coupling (y=
—0.001). T=250 ms. The parameters for APD restitution are the
same as in Fig. 2(B), and the parameters for Ca cycling are the
same as in Fig. 5(A) except 8 and 7. ¢(T)=28(1+2e"73%), 4(d,)
=(1-0.5¢79"39) and u(T)=(1-0.15¢"7209) were used.

Ca-to-APD coupling), in which case the coupling promotes
instability. Alternatively, Ca can influence APD negatively
when y<0 (i.e., a larger Ca transient causes APD to shorten,
termed negative Ca-to-APD coupling), in which case the
coupling suppresses instability. However, new dynamics also
can occur in the negative Ca-to-APD coupling case, includ-

ID
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ing electromechanically concordant alternans (long APD ac-
companying a large Ca transient and vice versa), electrome-
chanically discordant alternans (long APD accompanying a
small Ca transient and vice versa), or electromechanically
quasiperiodic oscillations. Based on Eq. (34), the occurrence
of quasiperiodicity requires mmy=vq'g(qg’ —1)f<0,
which can occur only in the negative Ca-to-APD coupling
case in which y<<0.

Numerical simulation of Eq. (31) verifies the Ca-to-APD
coupling effects shown by the eigenvalue analysis. Figure 8
shows the instability boundaries for different Ca-to-APD
coupling (y=-0.001, 0, and 0.001, respectively), which is
the same as shown previously by Shiferaw et al. [16]. Posi-
tive Ca-to-APD coupling destabilizes the system (pushing
the border upwards to the right) while negative Ca-to-APD
coupling stabilizes the system (pushing the border down to
the left). For negative Ca-to-APD coupling, there are three
instability boundaries. At boundary I, the instability is
mainly due to the steepness of the SR Ca release function g’,
and leads to electromechanically discordant alternans [Fig.
9(A)]. At boundary II, the instability is mainly due to the
steepness of the APD restitution curve, and it first leads to
electromechanically concordant alternans, followed by elec-
tromechanically discordant alternans after stimulation fail-
ure, and finally to chaos [Fig. 9(B)]. At boundary III, both
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FIG. 9. (Color online) Bifurcations for negative Ca-to-APD coupling (y=-0.002) through the three stability boundaries shown in Fig. 8.
Black represents odd beats and cyan, even beats. (A) 7,=60, =5 (boundary I). (B) 7,=30, 8=6 (boundary II). (C) 7,=30, B8=5 (boundary
II0). ID represents irregular dynamics; CA represents concordant alternans; DA represents discordant alternans; QP represents quasiperiod-
icity. In the inset of the second panel in (C), a quasiperiodic relation between SR Ca release r (y axis) and APD (x axis) is shown.
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FIG. 10. (Color online) (A) APD versus DI for positive Ca-to-APD coupling (y=0.001) with (open diamonds) and without (solid
diamonds) APD normalized to 220 ms; for negative Ca-to-APD coupling (y=-0.001) with (open circles) and without (solid circles) APD
normalized; and for uncoupled system (line). 75=60 and B=8. (B) Stability boundaries before (solid line) and after (dashed line) APD

normalization. Other parameters are the same as in Fig. 8.

voltage and Ca cycling dynamics are unstable. In this case,
quasiperiodic dynamics occurs close to the bifurcation, fol-
lowed by electromechanically concordant alternans, electro-
mechanically discordant alternans, and finally chaos [Fig.
9(C)].

In this model, negative Ca-to-APD coupling shortens
APD and positive Ca-to-APD coupling prolongs APD, which
in turn affects APD restitution slope [Fig. 10(A)] and thus
the onset of the instability. To exclude the possibility that
these effects on APD restitution slope caused the shift in
instability boundaries, Fig. 10(B) shows the instability
boundaries for the positive Ca-to-APD coupling case before
and after the baseline APD was rescaled. Prolongation of
APD by positive coupling promotes instability, but the cou-
pling itself has a large effect on stability.

We also set the parameters for Ca cycling so as to undergo
transitions from regions I to regions III and IV of Fig. 4(A).
We were not able to identify dynamics due to the coupling,
although the dynamics is very complex when both sub-
systems are unstable. However, we believe other dynamics
may emerge due to the high-dimensional parameters and
nonlinearity.

Finally we studied the effects of APD on Ca flux into the
cell, i.e., the effects of the term #(a,,;—a,) in Eq. (31).
When 7> 0, this term indicates that a longer APD causes net
Ca influx, which we call positive APD-to-Ca coupling. When
7<0, this term indicates that a longer APD causes net Ca
efflux, which we call negative APD-to-Ca coupling. Figure
11(A) shows the instability boundaries when these two cases
of APD-to-Ca coupling are matched with either positive
(solid line) or negative (dashed line) Ca-to-APD coupling.
Figure 11(B) shows SR Ca release versus APD for the four
different regions marked in Fig. 11(A). Quasiperiodic dy-

namics occurs both with the combination of negative APD-
to-Ca coupling with positive Ca-to-APD coupling, as well as
positive APD-to-Ca coupling with negative Ca-to-APD cou-

pling.

VI. DISCUSSION

In this study, we developed a set of nonlinear iterated map
equations, based on data obtained from experimental studies,
to describe the nonlinear dynamics of EC coupling. Saddle-
node bifurcations leading to bistability, period-doubling bi-
furcations leading to alternans, and period-doubling routes to
chaos can independently occur in both APD or Ca cycling
subsystems. The mechanisms of the dynamics due to APD
restitution are well understood from previous studies
[3.,42,51,53,63]. Whereas some of the mechanisms for dy-
namics of Ca cycling and its coupling to APD have been
analyzed previously [13-16], the saddle-node bifurcations
leading to bistability and period-doubling routes to chaos
have not been previously described for either Ca cycling
alone, or for the coupled dynamics of APD and Ca cycling,
and represent findings of the present study. Most signifi-
cantly, our study extends the analysis of EC coupling non-
linear dynamics to the case in which total cell Ca varies from
beat-to-beat. This takes an important step in linking the
coupled maps analysis to physiologically realistic conditions,
since in experimental studies, total cell Ca always changes
on a beat-to-beat basis, except for the trivial case of period-1.
Under these conditions, we show that the coupling between
APD and Ca can lead to electromechanically discordant
APD-Ca alternans or quasiperiodicity, depending on whether
the Ca-to-APD or APD-to-Ca couplings are both negative,
both positive or opposite in sign.
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FIG. 11. (A) The stability boundaries in 7-T parameter space for y=0.001 (solid line) and y=-0.001 (dashed line). (B) r versus APD at
the four boundary locations marked “al,” “a2,” “b1,” and “b2.” 7,=60, B=5, and other parameters are the same as in Fig. 8.

However, although the iterated map approach has the ad-
vantage of being easy for analytical and numerical treatment
and for obtaining mechanistic insights into dynamics, it has
limitations. It still remains a low-dimensional representation
of a high-dimensional system, which may not accurately rep-
resent the dynamics of the real system or may miss important
dynamics. For these reasons, it will be critical to validate the
dynamics using detailed physiological action potential mod-
els, to both define the dynamics that are relevant physiologi-
cally, and to assess how additional factors in detailed models
may alter dynamics predicted by the iterated map. For in-
stance, short-term memory due to ion channel recovery and
ion accumulation may have large effects on dynamics
[60,61,64—66]. In addition, as shown by Jordan and Christini
[67], action potential morphology may modulate the onset of
Ca alternans, which we cannot assess in the iterated map
study. Nevertheless, the iterated map study provides poten-
tially useful mechanistic insights to EC coupling dynamics,
as exemplified originally by Nolasco and Dahlen [3] in their
classic study of APD restitution. The approach here provides
valuable information which can be used as a basis to explore

dynamical features of more detailed models, to illuminate
experimental findings and to design experimentally testable
predictions for new biological experiments. For example,
whereas early interpretations of experimental Ca transient
alternans focused on the sensitivity of SR Ca release (our g’
factor) as driving alternans [13,68], the iterated map studies
also demonstrate a key role of SR Ca uptake (our 4’ factor).
This is likely to be the more important factor in causing
alternans during ischemia and heart failure [15], in which the
major pathophysiological change is depression of SERCA
function, more so than altered gain of SR Ca release [equiva-
lent to the transition from region I to region II in Fig. 4(A)].
Our study also shows that depression of SR Ca release can
promote alternans when SR Ca uptake is normal [transition
from region I to region IV in Fig. 4(A)], which may provide
an explanation for why tetracaine, which inhibits RyR open-
ing, promotes Ca alternans [34].
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